Type: \(\displaystyle A^{1}_3\) (Dynkin type computed to be: \(\displaystyle A^{1}_3\))
Simple basis: 3 vectors: (1, 2, 2, 3, 2, 1), (0, -1, 0, 0, 0, 0), (0, 0, 0, -1, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: 2A^{1}_1
simple basis centralizer: 2 vectors: (0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 0)
Number of k-submodules of g: 20
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{1}+\omega_{3}}+4V_{\omega_{3}}+4V_{\omega_{2}}+4V_{\omega_{1}}+7V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, -1)g_{-6}-\varepsilon_{4}+\varepsilon_{5}
Module 21(-1, 0, 0, 0, 0, 0)(-1, 0, 0, 0, 0, 0)g_{-1}1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 31(1, 0, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0)g_{1}-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
Module 44(-1, -1, -1, -2, -2, -1)(0, 0, 1, 0, 0, 0)g_{3}
g_{9}
g_{13}
g_{-33}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 54(-1, -1, -2, -2, -1, -1)(0, 0, 0, 0, 1, 0)g_{5}
g_{10}
g_{14}
g_{-32}
\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 61(0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 1)g_{6}\varepsilon_{4}-\varepsilon_{5}
Module 74(0, -1, -1, -2, -2, -1)(1, 0, 1, 0, 0, 0)g_{7}
g_{12}
g_{17}
g_{-31}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{4}+\varepsilon_{5}
Module 84(-1, -1, -2, -2, -1, 0)(0, 0, 0, 0, 1, 1)g_{11}
g_{16}
g_{20}
g_{-29}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 96(-1, 0, -1, -1, -1, -1)(0, 0, 1, 1, 1, 0)g_{15}
g_{19}
g_{-30}
g_{23}
g_{-27}
g_{-24}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{4}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 106(0, 0, -1, -1, -1, -1)(1, 0, 1, 1, 1, 0)g_{18}
g_{22}
g_{-28}
g_{26}
g_{-25}
g_{-21}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{3}+\varepsilon_{5}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 116(-1, 0, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1)g_{21}
g_{25}
g_{-26}
g_{28}
g_{-22}
g_{-18}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{5}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 126(0, 0, -1, -1, -1, 0)(1, 0, 1, 1, 1, 1)g_{24}
g_{27}
g_{-23}
g_{30}
g_{-19}
g_{-15}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{3}+\varepsilon_{4}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 134(0, 0, 0, 0, -1, -1)(1, 1, 2, 2, 1, 0)g_{29}
g_{-20}
g_{-16}
g_{-11}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 144(-1, 0, -1, 0, 0, 0)(0, 1, 1, 2, 2, 1)g_{31}
g_{-17}
g_{-12}
g_{-7}
-\varepsilon_{4}-\varepsilon_{5}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 154(0, 0, 0, 0, -1, 0)(1, 1, 2, 2, 1, 1)g_{32}
g_{-14}
g_{-10}
g_{-5}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
Module 164(0, 0, -1, 0, 0, 0)(1, 1, 1, 2, 2, 1)g_{33}
g_{-13}
g_{-9}
g_{-3}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
Module 1715(-1, -1, -2, -2, -2, -1)(1, 1, 2, 2, 2, 1)g_{34}
g_{-8}
g_{35}
g_{-4}
g_{-2}
g_{36}
-h_{4}
-h_{2}
h_{6}+2h_{5}+3h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-36}
g_{2}
g_{4}
g_{-35}
g_{8}
g_{-34}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{1}+\varepsilon_{3}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
0
0
0
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-\varepsilon_{1}-\varepsilon_{3}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 181(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{1}0
Module 191(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{5}-h_{3}0
Module 201(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{6}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 5
Heirs rejected due to not being maximally dominant: 9
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 9
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_2
Potential Dynkin type extensions: A^{1}_4, D^{1}_4, A^{1}_3+A^{1}_1,